A Novel Prenylchalcone from Humulus lupulus

Wen Shu WANG, Ya Wei ZHOU*, Yun Hua YE, Mei Lan LI

The Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871

Abstracts: From hops of *Humulus lupulus*, a novel prenylchalcone was isolated, which showed inhibition against BGC-823 cells. The structure was elucidated as 5"-(2"'-hydroxyisopropyl-)-dihydrofurano-[2", 3"-B]-4, 4'-dihydroxy-6'-methoxychalcone, by HRFABMS and NMR spectra.

Keywords: Cannabinaceae, Humulus lupulus, prenylchalcone.

Hops (the inflorescences) of *H. lupulus L. (Cannabinaceae)* are added into beers to give its flavor and bitterness, and are also used as stomachics, diuretic and tranquilizer in China¹. We report here a novel prenylchalcone isolated from 80% ethanol extracts of hops collected in Xinjiang Province, which showed inhibition activity against human stomach carcinoma cells BGC-823 (IC₅₀: 1.87 μ mol/mL).

1 was obtained as yellow oil. There are 21 carbon signals in its ¹³C NMR and DEPT spectra, including 9 C, 8 CH, 1 CH₂ and 3 CH₃. HRFABMS gave a $[M+H]^+$ peak at m/z =371.149334 (Calcd. for C₂₁H₂₃O₆ 371.149464). The molecule formula was then determined as C₂₁H₂₂O₆, U=11. ¹H and ¹³C NMR spectrum showed a xanthohumol skeleton² (**Table 1**). However, in the ¹³C NMR, a quatenary carbon at δ 70.1 and an oxygenated CH at δ 90.1 appeared without two double bonds in prenyl of xanthohumol. ¹H NMR indicated an oxygenated proton at δ 4.52 (t, 1H, J=9.0Hz). Furthermore, due to the unsaturated degree, a furan structure should exist between the phenyl and **A** ring of this chalcone³. In fact, HMBC spectrum of **1** indicated cross peaks between H-5' δ 5.95(s)

Figure 1 Structure of new prenylchalcone 1 and the key correlations in HMBC

^{*} E-mail: ywzhou@pku.edu.cn

Wen Shu WANG et al.

and two carbons δ 160.3 (C-4') and δ 158.8 (C-6'), which could only be observed in the structure stated in **Figure 1**. Therefore, compound **1** was identified as 5"-(2"-hydroxyisopropyl) dihydrofurano-[2", 3"-B]-4, 4'-dihydroxy-6'- methoxychalcone.

Protons	$\delta_{ m H}$ (J)	Carbons	δ_{C}	Carbons	δ_{C}
α	6.97 (d. 16.0)	α	125.4	4'	160.3
β	7.26 (d, 16.0)	β	141.9	5'	92.1
2,6	7.45 (d, 8.8)	C=O	189.2	6'	158.8
3, 5	6.75 (d, 8.8)	1	125.6	4"	26.2
5'	5.95 (s)	2, 6	130.1	5"	90.1
4"	2.90 (dd, 16.0, 9.0) / 2.93 (dd, 16.0, 9.0)	3, 5	115.9	1'''	26.2
5"	4.52 (t, 9.0)	4	160.0	2'''	70.1
1'''	1.07 (s)	1'	105.2	3'''	24.5
3'''	1.06 (s)	2'	156.2	6"-OMe	55.7
6'-OMe	3.62 (s)	3'	105.2		

 Table 1
 ¹H and ¹³C NMR data of 1^a (d₆-DMSO, 400MHz for proton and 100MHz for carbon)

The assignments were based on DEPT and 2D NMR (¹H-¹H COSY, HMQC, HMBC) spectra.

References

- 1. Jiangsu New College of Medicine, *Dictionary of Chinese Traditional Medicines*. **1977.** Shanghai Sci-Tech. Press, Shanghai, pp.4325.
- 2. S. S. Sun, S. Watanabe, T. Saito, Phytochemistry, 1989, 28 (6), 1776.
- 3. N. Tabata, M. Ito, H. Tomoda, S. Omura, *Phytochemistry*, 1997, 46 (4), 683.

Received 17 September, 2003